
I060602_TAMU081202_Coldfire_MCF5307.pdf

Synopsis V1.0
Proton and Heavy Ion Single Event Effects Testing

of the Motorola ColdFire (MCF5307) Processor

Jim Howard2, Austin Lanham1, Lamar Dougherty1, Linh Nguyen1,
Joe Roman1, and Tim Irwin3,

1. NASA/Goddard Space Flight Center, Greenbelt, MD
2. Jackson and Tull Chartered Engineers, Washington DC

3. QSS, Inc. Lanham, MD

Test Date: June 6, 2002 & August 12, 2002 Report Date: April 11, 2003.

I. Introduction
This study was undertaken to determine the proton Single Event Effects (SEE) and total
dose susceptibility of the Motorola ColdFire (MCF5307) Processor. The device was
biased and operating when exposed to a proton beam at the Indiana University
Cyclotron Facility (IU) and heavy ion beams at the Texas A&M University Cyclotron
Single Event Effects Test Facility. The processor software was written to test various
sections of the processor throughout the exposures.

II. Devices Tested
One part was exposed to protons and three devices were exposed to heavy ions for this
testing. These device were manufactured by Motorola and was characterized prior to
exposure. The lot date code for these devices was 0120.

III. Test Facilities
Facility: Indiana University Cyclotron Facility
Proton Energy: 189.9 MeV incident on DUT structure
Flux: 8.8 x 107 to 2.7 x 108 protons/cm2/s.

Facility: Texas A&M University Cyclotron Single Event Effects Test Facility
Flux: 4.9 x 103 to 8.8 x 104 particles/cm2/s.

Table I
Ion Energy

(MeV)
LET

(MeVcm2/mg)
Ne 264 2.8
Ar 496 8.7
Kr 942 28.9
Xe 1321 53.6

IV. Test Hardware and Software
The test setup consisted of a laptop PC for output collection, a 75-foot serial cable, a 75-
foot ribbon cable and the M5307C3 evaluation board manufactured by Matrix Design &
Manufacturing, Inc.

The code was downloaded via CodeWarrior IDE, a P&E Microsystems ‘Wiggler’ and
the Background Debug Monitor (BDM) of the evaluation board. The test code was also
stored in Flash ROM, but due to unknown linking problems, only portions of the code
would execute properly. After the code was acquired from either Flash or the BDM, the
code was stored and run from DRAM. The beam of radiation was targeted directly at
the chip so that the peripheral devices were less likely to be harmed.

The MCF5307 was tested while running on the M5307C3 evaluation board. This board
utilizes most of the functions of the ColdFire processor. The test setup consisted of a PC
laptop, an HP6237B Power Supply, a Keithley 2000 multimeter, the M5307C3 evaluation
board, a 75 ft. ribbon cable, a 75 ft. serial cable, and a 75 ft. power cable. The power
supply was set to output 8V with 3A current limiting and the Keithley was used to
monitor the current draw of the board. The ribbon cable was used to download code
from the laptop to the board and the serial cable was used to output data from the
board to the laptop. A block diagram of the board and its inputs and outputs is shown
in Figure 1.

Figure 1. M5307C3 Eval. Board block diagram.

To fully test all of the functionality of the chip, a firm understanding of the chip’s
functionality is required. Figure 2 shows the MCF5307’s block diagram.

Figure 2. Cold Fire MCF5307 Block Diagram

Each of the functional blocks was considered in the design of the test software. An
outline of each block and how that block is addressed in the test software is show in
Table 1.

Each of the tests will be performed to identify any problems if at all possible. Therefore,
the tests are carried out in a specific order to insure that errors that may occur will be
pinpointed to the block in error. Complete details of each test is contained in Appendix
A.

There are several blocks of the CPU that are instrumental in simply running code.
These blocks are extremely difficult to test specifically but the fact that the code runs at
all is evidence that these blocks are working.

The following blocks are considered operational if the test code runs.
• Processor core (ALU, pipeline)
• Address and data registers
• PLL circuit
• DRAM controller
• UART (serial output)
• Background Debug Module

These parts will not require testing but there proper operation will be verified in the
execution of the test code.

Table 1
The functional blocks of the MCF5307 and the test software used to test each block

Block label Test software
ColdFire V3 Core Exercised in execution of test software. ALU and registers

tested in a specific test. Floating-point operations also tested in
software although this functionality is emulated in software.

8K U-Cache Tested in specialized cache test. Exercises all cache modes
(write-though, copy-back, write-buffer, etc.) and all read/write
and hit/miss cases.

4K Internal SRAM Tested in specialized SRAM test. Not used to store code or
data during the duration of the test.

MAC / DIV Exercised in ALU and floating-point test.
Debug Module Background debug used to download and run code.
Test Controller Not tested. Test controller not needed in space
JTAG Port Not tested. JTAG port will not needed in space
PLL Exercised in clock generation and accessing external memory.
Bus Interface Exercised in accessing code and data from memory.
Chip Selects Exercised while accessing Flash, DRAM and External SRAM.
Interrupt Controller Exercised in software watchdog and DMA test.
DRAM Controller Exercised while running code and storing data.
DMA Module Tested in specialized DMA test.
DUART Serial I/O Exercised in serial communications while testing.
Dual Timer Module Tested in specialized timer test.
I2C Module Not tested. It is would be difficult to implement a test

procedure for this module given the required test setup.
Parallel Port Not tested. It is would be difficult so implement a test

procedure for this module given the required test setup.
Software Watchdog Tested in safeguarding the system.

V. Test Methods
The normal process flow for testing the processor was to first perform a cold boot to
ensure that the processor is in a known state. Then the test software is executed and
allowed to perform a number of loops through all of the tests to check for proper
operation of the processor. If this was successful, the beam would then be turned on
and the processor monitor would be watched for events. If an event occurred that
tripped the watchdog timer or completely froze the system a Single Event Functional
Interrupt (SEFI)), the beam was stopped and the event recorded. Until that time, any
error events that occurred were recorded and the processor and proton exposure were
allowed to continue. At the end of a run (which ended in a SEFI), the processor was
warm-booted to try to recover without a power cycle. When that would not recover the
processor, a power cycle and reboot were done and the system checked out for the next
run.

For proton testing, this cycle was repeated until the one device tested failed,
presumably from total dose. For heavy ion testing, angles of 30, 45 and 60 degrees were
used with the four ion beams to give 13 LETs across the LET range from 2.8 to over 100
MeV-cm2/mg. Since total dose is generally not an issue for heavy ion testing (and was
not for this device), one device was used to map the upset and SEFI characteristics as a
function of LET. All four devices were then used, to ensure sufficient statistics and
understanding device-to-device variations, it investigate device latchup at high LETs.

VI. Results
Proton Results
Proton-induced Single Event Upsets (SEU) and Single Event Functional Interrupts
(SEFI) were seen on this part. SEUs were observed through Address errors, Floating
Point Units (FPU) errors, etc. Samples of the types of SEU events that were seen are
detailed in a summary of all proton results given in Table II. However, accurate
estimate of their cross sections was overshadowed by the SEFI event rate. Therefore,
only SEFI data will be presented in this report.

There were two types of SEFI events. The first is the case where the software watchdog
timer was able to detect a stoppage in the main program operation. The second was
where the processor operation was not detected by the watchdog, but by the operator
noticed the SEFI and after stopping the beam, the debug module was used to reset the
processor. Each test run ended in either one of these two types of events, with the
exception of one run that was stopped prematurely. There were no SEFI events
observed that required a power cycle to recover normal operations.

Therefore, the total SEFI cross section will be defined as the sum of these two types of
events and the watchdog SEFI cross section will just be those events that the watchdog
timer caught the problem. There were 28 total SEFI events detected. On the 29th run,
total dose failure was observed (processor current had increased from approximately
750 mA to 1200 mA). Of those 28, six events were caught by the watchdog timer and a
warm reboot of the processor recovered normal operation. Of the remaining 22 events,
thirteen events required that the operator use the debug module to reset the processor.

The average cross sections for these SEFI events are given in Table III.

Table II
Chronology of proton test results

Run Encountered Problem Outcome
1 CPU froze while filling memory Debug module restored operation
2 CPU froze while filling memory Debug module restored operation

3 CPU froze during Internal SRAM test Recovered via Software Watchdog Timer
(SWT) soft reset

4 Error accessing Internal SRAM SWT terminated bus cycle and restored
proper operation

5 CPU froze while filling memory Recovered via SWT soft reset
6 CPU froze during Internal SRAM test Debug module restored operation
7 CPU froze while filling memory Debug module restored operation
8 Persisting errors in Internal SRAM test Debug module restored proper operation
9 CPU froze during External SRAM test Debug module restored operation

10 Failure in Interrupt Controller during DMA test Debug module restored operation
11 CPU froze during External SRAM test Debug module restored operation
12 CPU froze during Internal SRAM test Debug module restored operation

13 Single event error during Internal SRAM test SWT terminated bus cycle and restored
proper operation

14 CPU froze during Internal SRAM test Debug module restored operation
15 CPU froze, illegal instruction Debug module restored operation
16 CPU froze Debug module restored operation
17 Persisting errors in Internal SRAM test Debug module restored proper operation
18 Persisting errors in Cache test Debug module restored proper operation
19 CPU froze during DMA test Debug module restored operation
20 CPU froze Debug module restored operation
21 Persisting errors in UART module Debug module restored operation
22 CPU froze Debug module restored operation

23 CPU froze during Internal SRAM test followed
by illegal instruction error Debug module restored operation

24 Single event error during Internal SRAM test SWT terminated bus cycle and restored
proper operation

25 CPU froze while filling memory Debug module restored operation
26 CPU froze, illegal instruction Debug module restored operation
27 CPU froze while filling memory Recovered via SWT soft reset
28 Single event error in DMA test Single event
29 CPU froze Failure

Table III
SEFI Results Summary

Total SEFI
Average Cross
Section (cm2)

Watchdog SEFI
Average Cross
Section (cm2)

Debugger Reset
SEFI Average
Cross Section

(cm2)
2.45 x 10-11 5.25 x 10-12 1.93 x 10-11

As stated above, in all but the last run, the processor could recover normal operation. In
this last run after the SEFI event, normal operation could not be restored after any

number of power cycles and/or “cooling off” periods. As there was only one part to be
tested, the testing of the ColdFire processor ended at this point.

It is probable that the failure was simply due to total dose buildup, as evidenced by the
large increase in supply current. There was no evidence, however, on any previous runs
that the processor operation was degraded. Other state-of-the-art processors have
demonstrated this same normal operation to complete failure from total dose.
Therefore, if this is considered a total dose failure, then the single part failure level was
approximately 62 krads(Si).

Heavy Ion Results
Similar to the proton results Heavy Ion-induced Single Event Upsets (SEU) and Single
Event Functional Interrupts (SEFI) were seen. However, the SEFI event rate from ions
was so dominant that any measurement of upsets was impossible. Therefore, only SEFI
data will be presented in this report.

SEFI measurements were taken across seven effective LET points through a range of 2.8
to 28.9 MeV-cm2/mg. The results of these measurements are given in Figure 3. The solid
black circles are the raw data points and the blue triangles are the averaged values (with
the error bars representing one sigma of the average). A best fit to the Weibull function
is done using these averages, giving and LET threshold of approximately 2.5 and a
saturation cross section of approximately 2.9 x 10-5 cm2.

10-7

10-6

10-5

10-4

SE
F

I
C

ro
ss

 S
ec

ti
on

 (c
m

2
)

302520151050

Effective LET (MeV-cm 2/mg)

Weibull Parameters
σsat = 2.9 x 10-5 cm2

L0 = 2.5 MeV-cm 2/mg

W = 5.5 MeV-cm 2/mg
S = 1.8

 Raw Cross Section
 Average Cross Section
 Weibul Fit

Figure 3. Heavy Ion-induced SEFI cross section as a function of Effective LET.

In addition to the SEFI testing, the ColdFire processor was evaluated for heavy ion-
induced latchup. For this testing, there were 13 different effective LET values used
ranging from 2.8 to 107 MeV-cm2/mg. For each of these LET values a minimum fluence
of 107 ions were incident on the four processors used in this testing. In all cases there
was no indication of latchup in the processor. Therefore, the LET threshold for latchup
for the ColdFire processor is greater than 107 MeV-cm2/mg.

VII. Recommendations
In general, devices are categorized based on test data into one of the four following
categories:

Category 1 – Recommended for usage in all NASA/GSFC spaceflight applications.
Category 2 – Recommended for usage in NASA/GSFC spaceflight applications, but

may require mitigation techniques.
Category 3 – Recommended for usage in some NASA/GSFC spaceflight applications,

but requires extensive mitigation techniques or hard failure recovery
mode.

Category 4 – Not recommended for usage in any NASA/GSFC spaceflight applications.

Due to the high SEFI event rate, the Motorola ColdFire (MCF5307) Processors are
Category 3 devices.

Appendix A

Register/ALU test

This test was designed to test both register loads/stores and basic ALU functions.
Although the registers in the ColdFire will be tested inherently, specific testing
eliminates any guesswork as to what is happening in the CPU.

The test will assign five variables to different registers and do several arithmetic and
boolean operations on the values to verify correct operation of the ALU. It is not certain
which registers are actually exercised, but based on the simple nature of this test
program, generally, register r0-r4 are tested specifically.

The function that carries out the register test is given below.

int RegisterTest(void) {
register int a,b,c,d,e,f;
// Test immediate addressing
a=0xAAAAAAAA;
// Test immediate addition and register transfer
b=a+0x11111111;
// Test various boolean functions
c=b<<1;
d=~c;
e=d&0x55555555;
f=(c+e)|d;

// Test for correctness
if (a != 0xAAAAAAAA

|| b != 0xBBBBBBBB
|| c != 0x77777776
|| d != 0x88888889
|| e != 0x1
|| f != 0xFFFFFFFF

) {
// Failed test
printf("Register Test: Failed.\r\n");
printf("Aborting further testing.\r\n");
return 0;

}
printf("Register Test: Passed.\r\n");
fflush(stdout);
return 1;

}

Internal SRAM test

The ColdFire contains 8 kB of internal SRAM that is accessible in one clock cycle. This
on-chip memory is easily tested by enabling it and writing know values to and from the
SRAM at different locations.

The code used to test the internal SRAM is shown below.

int SRAMTest(void){
unsigned long int temp1, temp2, temp3, temp4;
unsigned long int currentAddress;

/* Internal SRAM test */
// Enable SRAM (set RAMBAR[V] = 1)
cpu_iowr_32(RAMBAR, RAMBA | 0x1);

// Begin test
currentAddress = RAMBA;
while (currentAddress < RAMBA+4096) {

// Write zeroes
cpu_iowr_trap_32(currentAddress, 0x00000000);
temp1 = cpu_iord_trap_32(currentAddress);
// Write ones
cpu_iowr_trap_32(currentAddress, 0xFFFFFFFF);
temp2 = cpu_iord_trap_32(currentAddress);
// Write Checkerboard
cpu_iowr_trap_32(currentAddress, 0xAAAAAAAA);
temp3 = cpu_iord_32(currentAddress);
// Invert Checkerboard
cpu_iowr_trap_32(currentAddress, 0x55555555);
temp4 = cpu_iord_trap_32(currentAddress);
// Verify correctness
if (temp1 != 0x00000000 || temp2 != 0xFFFFFFFF ||

temp3 != 0xAAAAAAAA || temp4 != 0x55555555)
{

printf("Memory Test: Failed.\r\n");
printf("Read/Write from Internal SRAM failed at

address %X.\r\n", currentAddress);
printf("Aborting further testing.\r\n");
return 0;

}
// Test different portion of Internal SRAM
currentAddress = currentAddress + 64;

}
printf("Memory Test: Passed.\r\n"); fflush(stdout);
return 1;

}

Cache test

The MCF5307 feature a 4 kB unified cache. The cache is organized as 4-way set
associative with a line size of 16 bytes. This means that each 32-bit address contains a 4-
bit offset, 7-bit set field and a 21-bit tag field. The cache supports both write-through
and copy-back modes as well as incorporating an optional 4 entry write buffer. All of
these options were tested.

The test works as follows. The onboard external SRAM will be assigned to address
0x20000000 to separate data and code space. The external SRAM will be filled with
psuedo-random values generated from the timer unit. The test program will then
enable cache and verify that the correct values are properly read and written from the
cachable memory space. The test will be carried out using each available mode.

Success of this test relies on enabling/disabling the cache and knowledge of the exact
contents of the cache at any given time.

The code used for testing the code is show below.

int CacheTest(void) {
unsigned char *mem; // Memory space the size of cache
unsigned long int i;

// Use ESRAMBA as cacheable space ensuring no code/data mixing
mem = (unsigned char *)ESRAMBA;
// Set Timer to generate random values (reference to 256)
cpu_iowr_16(TRR, 0xFFFF);

// Enable Timer
cpu_iowr_16(TMR, 0x00F3);

// Fill memory with alternating pattern of bits
printf("Filling memory\n"); fflush(stdout);
for (i = 0; i < ESRAMSIZE; i+=4) {

// Load with pseudo-random values
fillLongWord(((unsigned long int)mem)+i,

cpu_iord_8(TCN),
cpu_iord_8(TCN)+1,
cpu_iord_8(TCN)+2,
cpu_iord_8(TCN)+3);

if (i%(ESRAMSIZE/64) == 0) {
printf("Filling memory %X/%X\n",i,ESRAMSIZE);
fflush(stdout);

}
}
printf(" \n");

// Run cache tests in standard mode
cpu_iowr_32(ACR0, ESRAMBA | MCF5307_ACR_E |

MCF5307_ACR_S_USER | MCF5307_ACR_CM_00);
if (CacheTestRun(mem)) {

printf("Cache test passed in standard mode.\r\n");
// Enable Copy-back mode
cpu_iowr_32(ACR0, cpu_iord_32(ACR0) | MCF5307_ACR_CM_01);

if(CacheTestRun(mem)) {
printf("Cache test passed in copy-back mode.\r\n");
// Enable store buffer
cpu_iowr_32(CACR, cpu_iord_32(CACR) | MCF5307_CACR_DNFB);

if(CacheTestRun(mem)) {
printf("Cache test passed store buffer.\r\n");

}
}

}
// Disable cache
printf("Cache Test: Passed. \r\n"); fflush(stdout);
return 1;

}
int CacheTestRun(unsigned char *mem, unsigned long int cacr_val) {

unsigned char temp[16];
unsigned long int i;

// Disable to load reference array
mcf5307_wr_cacr(0x00000000);

/* Load Reference Array */
// Set of 0

temp[0] = mem[0x00000]; // Tag 0
temp[1] = mem[0x00805]; // Tag 1
temp[2] = mem[0x01009]; // Tag 2
temp[3] = mem[0x0180F]; // Tag 3

// Set of 16
temp[4] = mem[0x10101]; // Tag 50
temp[5] = mem[0x34103]; // Tag 100
temp[6] = mem[0x4B10A]; // Tag 150
temp[7] = mem[0x6410E]; // Tag 200

// Set of 56
temp[8] = mem[0x08382]; // Tag 16
temp[9] = mem[0x10384]; // Tag 32
temp[10] = mem[0x20387]; // Tag 64
temp[11] = mem[0x4038C]; // Tag 128

// Set of 65
temp[12] = mem[0x03C13]; // Tag 7
temp[13] = mem[0x18C16]; // Tag 49
temp[14] = mem[0x28C18]; // Tag 81
temp[15] = mem[0x3CC1B]; // Tag 121

// Enable Cache
mcf5307_wr_cacr(MCF5307_CACR_CINVA);
mcf5307_wr_cacr(cacr_val);

/* Load 4 different cache lines all 4-ways */
// Load Set 0

fillCacheLine(mem+0x0000); // Tag 0
fillCacheLine(mem+0x0800); // Tag 1
fillCacheLine(mem+0x1000); // Tag 2
fillCacheLine(mem+0x1800); // Tag 3

// Load Set 16
fillCacheLine(mem+0x10100); // Tag 50
fillCacheLine(mem+0x34100); // Tag 100
fillCacheLine(mem+0x4B100); // Tag 150
fillCacheLine(mem+0x64100); // Tag 200

// Load Set 56

fillCacheLine(mem+0x08380); // Tag 16
fillCacheLine(mem+0x10380); // Tag 32
fillCacheLine(mem+0x20380); // Tag 64
fillCacheLine(mem+0x40380); // Tag 128

// Load Set 65
fillCacheLine(mem+0x03C10); // Tag 7
fillCacheLine(mem+0x18C10); // Tag 49
fillCacheLine(mem+0x28C10); // Tag 81
fillCacheLine(mem+0x3CC10); // Tag 121

/* Create read hits (by accessing bytes from the lines */
// Read from Set 0

if (mem[0x0000] != temp[0] || mem[0x0805] != temp[1] ||
mem[0x1009] != temp[2] || mem[0x180F] != temp[3]) {
cprintf("Cache read hit failed.\r\n");
return 0;

}
// Read from Set 16

if (mem[0x10101] != temp[4] || mem[0x34103] != temp[5] ||
mem[0x4B10A] != temp[6] || mem[0x6410E] != temp[7]) {
cprintf("Cache read hit failed.\r\n");
return 0;

}
// Read from Set 56

if (mem[0x08382] != temp[8] || mem[0x10384] != temp[9] ||
mem[0x20387] != temp[10] || mem[0x4038C] != temp[11]) {
cprintf("Cache read hit failed.\r\n");
return 0;

}
// Read from Set 65

if (mem[0x03C13] != temp[12] || mem[0x18C16] != temp[13] ||
mem[0x28C18] != temp[14] || mem[0x3CC1B] != temp[15]) {
cprintf("Cache read hit failed.\r\n");
return 0;

}

/* Create read misses */
// Disable cache and read values
mcf5307_wr_cacr(0);

temp[0] = mem[0x2000]; // Read from Set 0, Tag 4
temp[1] = mem[0x22900]; // Read from Set 16, Tag 69
temp[2] = mem[0x4380]; // Read from Set 56, Tag 8
temp[3] = mem[0x32410]; // Read from Set 65, Tag 100

// Renable cache
mcf5307_wr_cacr(cacr_val);

// Create read misses
temp[0] = mem[0x2000]; // Read from Set 0, Tag 4
temp[1] = mem[0x22900]; // Read from Set 16, Tag 69
temp[2] = mem[0x4380]; // Read from Set 56, Tag 8
temp[3] = mem[0x32410]; // Read from Set 65, Tag 100

if (temp[0] != mem[0x2000] || temp[1] != mem[0x22900] ||
temp[2] != mem[0x4380] || temp[3] != mem[0x32410]) {
cprintf("Cache read miss failed.\r\n");
return 0;

}

/* Create write hits */
cpu_iowr_8(mem+0x2000, 0xAA);
cpu_iowr_8(mem+0x22900, 0x55);
cpu_iowr_8(mem+0x4380, 0xAB);
cpu_iowr_8(mem+0x32410, 0x12);

// Test if written properly
if (mem[0x2000] != 0xAA || mem[0x22900] != 0x55 ||

mem[0x4380] != 0xAB || mem[0x32410] != 0x12) {
cprintf("Cache write hit failed.\r\n");
return 0;

}
// Flush values from cache

// Load Set 0
fillCacheLine(mem+0x0000); // Tag 0
fillCacheLine(mem+0x0800); // Tag 1
fillCacheLine(mem+0x1000); // Tag 2
fillCacheLine(mem+0x1800); // Tag 3

// Load Set 16
fillCacheLine(mem+0x10100); // Tag 50
fillCacheLine(mem+0x34100); // Tag 100
fillCacheLine(mem+0x4B100); // Tag 150
fillCacheLine(mem+0x64100); // Tag 200

// Load Set 56
fillCacheLine(mem+0x08380); // Tag 16
fillCacheLine(mem+0x10380); // Tag 32
fillCacheLine(mem+0x20380); // Tag 64
fillCacheLine(mem+0x40380); // Tag 128

// Load Set 65
fillCacheLine(mem+0x03C10); // Tag 7
fillCacheLine(mem+0x18C10); // Tag 49
fillCacheLine(mem+0x28C10); // Tag 81
fillCacheLine(mem+0x3CC10); // Tag 121

// Disable cache and read values
mcf5307_wr_cacr(0);

if (mem[0x2000] != 0xAA || mem[0x22900] != 0x55 ||
mem[0x4380] != 0xAB || mem[0x32410] != 0x12) {
cprintf("Cache write hit failed w/ cache disabled.\r\n");
return 0;

}
// Renable cache

mcf5307_wr_cacr(cacr_val);

/* Create write misses */
cpu_iowr_8(mem+0x2800, 0xA5); // Set 0, Tag 5
cpu_iowr_8(mem+0x5000, 0x5A); // Set 16, Tag 10
cpu_iowr_8(mem+0x7800, 0xA5); // Set 56, Tag 15
cpu_iowr_8(mem+0xA000, 0x5A); // Set 65, Tag 20

if (mem[0x2800] != 0xA5 || mem[0x5000] != 0x5A ||
mem[0x7800] != 0xA5 || mem[0xA000] != 0x5A) {
cprintf("Cache write miss failed.\r\n");
return 0;

}
return 1;

}

Timer Unit Test

The TMU of the MCF5307 is tested using knowledge of the speed of the system clock
and the speed of memory. The timer is set up to count from 0 to 255 continuously. The
count is sampled and compared to the expected value plus and minus 2 counts.

The code for testing the Timer Unit is show below.

int TimerTest(void) {
int i, j, e = 0;
unsigned long int a, b, d;

// Set Timer reference to 256
//cpu_iowr_16(TRR, 0xFFFF);

// Enable Timer
cpu_iowr_16(TMR, 0x00F5);
for(j = 0; j < 50; j++) {

a = cpu_iord_16(TCN);
for (i=0; i < 16; i++)

b = cpu_iord_16(TCN);
if (b>a) d = b-a;
else d = (0xFFFF-a)+b;
if (d < 51 || d > 53) {

e++;
}

}
if (e > 2) {

printf("Experienced %i errors in timer unit.\r\n", e);
printf("Timer Test: Failed.\r\n");
return 0;

}
printf("Timer Test: Passed.\r\n"); fflush(stdout);
return 1;

}

DMA Test

The DMA unit of the MCF5307 contains four channels, only one of which is tested. The
test code utilizes channel 0. Memory is filled with know values and then transferred to
different location. The correct values are then verified.

The code for the DMA test is shown below.

int DMATest(void) {
unsigned long int memSour[DMATransSize];
unsigned long int memDest[DMATransSize];
unsigned long int i;

for (i = 0; i < DMATransSize; i++) {
memSour[i] = i;
memDest[i] = 0xDEADBEEF;

}

/* Configure DMA */
// Clear status register

cpu_iowr_8(DSR0, 0x01);
// DMA0 Source Address Register to DRAM space

cpu_iowr_32(SAR0, (unsigned long int)memSour);
// DMA0 Destination Address Register to internal SRAM

cpu_iowr_32(DAR0, (unsigned long int)memDest);
// DMA0 BYTE count register to DMATransSize

cpu_iowr_16(BCR0, 4*DMATransSize);
// Configure DMA interrupt

cpu_iowr_8(ICR6, 0x1E);
// Load DMAcomplete to location 0x100

cpu_iowr_32(UDEV2, (unsigned long int)(DMAcomplete));
// DMA0 Interrupt Vector register to interrupt 65

cpu_iowr_8(DIVR0, 65);
// Unmask the interrupt

cpu_iowr_32(IMR, cpu_iord_32(IMR) & 0xFFFFBFFF);

/* Sets DMA Control Register to 0x8048 (BCR24BIT=0) */
cpu_iowr_16(DCR0, MCF5307_DMA_DCR_INT

| MCF5307_DMA_DCR_SINC | MCF5307_DMA_DCR_SSIZE_LONG
| MCF5307_DMA_DCR_DINC | MCF5307_DMA_DCR_DSIZE_LONG);

// Start DMA transfer
cpu_iowr_16(DCR0, cpu_iord_16(DCR0) | MCF5307_DMA_DCR_START);

while (DMADone == 0) {
printf("Completed %i/%i of DMA transfer. Status: %X\n",
DMATransSize-cpu_iord_16(BCR0),
DMATransSize, cpu_iord_8(DSR0));
fflush(stdout);

}
// Disable DMA

cpu_iowr_32(DCR0, 0x0);

for (i = 0; i < DMATransSize; i++) {
if (memSour[i] != memDest[i]) {

printf("DMA Test: Failed.\r\n");

printf("Memory at offset %X did not transfer
correctly.\r\n", i);
printMemoryBlock((int*)(memSour+i-8), 16);
printMemoryBlock((int*)(memDest+i-8), 16);
return 0;

}
}

printf("DMA Test: Passed. \r\n");
fflush(stdout);
return 1;

}

Floating-point test

The final test performed on the MCF5307 tests the floating-point functionality of the
CPU and the multiply and accumulate feature. The code is straightforward and simply
test the CPU results with know values.

The code for the floating-point test is shown below.

int FloatingPointTest(void) {
double x, y, z;
// Test addition
x = 3.14159;
y = 2.718;
z = x+y;
if (z != 5.85959) {

printf("Floating Point Test: Failed.\r\n");
printf("Floaitng point addition failed.\r\n");
printf("Aborting further testing.\r\n");
return 0;

}
x = 3.5;
y = 0.015625;
z = x*y;
if (z != 0.0546875) {

printf("Floating Point Test: Failed.\r\n");
printf("Floaitng point multiply failed.\r\n");
printf("Aborting further testing.\r\n");
return 0;

}
x = 4.9999;
y = 5.0;
if (x >= y) {

printf("Floating Point Test: Failed.\r\n");
printf("Floaitng point boolean failed.\r\n");
printf("Aborting further testing.\r\n");
return 0;

}
z = y/x;
if (z != ((double)1.000020000400008000160003200064)) {

printf("Floating Point Test: Failed.\r\n");
printf("Floaitng point division failed.\r\n");
printf("Aborting further testing.\r\n");
return 0;

}

printf("Floating Point Test: Passed.\r\n"); fflush(stdout);
return 1;

}

